SYNTHESIS OF THE FREQUENCY CONTROL LAW BY MINIMUM OF STATOR CURRENT ON THE BASIS OF EQUATIONS FIELD ORIENTED MODEL ASYNCHRONOUS MACHINE

O. V. Klyuyev, A. V. Sadovoi

Abstract


In most literary sources, the laws of frequency control are obtained on the basis of models presented in the form of equivalent circuits of an asynchronous machine (AM) and equations corresponding to these schemes. Thus, a certain methodology has been developed for determining the magnitude of the supply voltage depending on its frequency, based on any given quality criterion for the steady-state AM operation mode. The main advantage of the stator current minimum mode is the ability to obtain moments that significantly exceed the rated value of the critical moment, which ensures the maximum overload capacity of the electric drive with the best ratio of electromagnetic moment to current.

Vector models AM are also well known that form the basis of synthesis techniques for closed multichannel control systems and do not address synthesis issues based on these models of frequency control laws. In this work, we obtained the law of frequency control on the minimum stator current based on AM equations compiled in the coordinate axes oriented along the rotor flux linkage vector, followed by verification of the calculations made using the equations of static, by transition processes in the dynamic model AM. In the general case, in the control law, the module of the supply voltage vector depends not only on the frequency, but also on the load moment and magnetic flux, which is reflected in the paper by the obtained laws of frequency control. The analysis of the dynamic model confirmed the practical constancy of absolute slip and the adequacy of the static model. With constant load moment and absolute slip, the frequency control law becomes linear and is a good approximation of the exact control law obtained from the basic system of AM equations in orthogonal axes.


Keywords


frequency control law; optimality criterion; field oriented model; absolute slip; load moment; modules vectors of voltage and stator current

References


Сандлер А.С., Сарбатов Р.С. Автоматическое частотное управление асинхронными двигателями. М.: Энергия, 1974. 328с.

Булгаков А.А. Частотное управление асинхронными двигателями. М.: Энергоиздат, 1982. 216c.

Васильев Д.А., Пантелеева Л.А. Энергоэффективное управление асинхронным электродвигателем. Вестник НГИЭИ, 2019. № 4 (95). С.100-115.

Островлянчик В.Ю., Поползин И.Ю. Исследование магнитной системы асинхронного двигателя при частотном управлении. Вестник Кузбасского государственного технического университета, 2016. №2. С.75-83.

Рудаков В.В., Столяров И.М., Дартау В.А. Асинхронные электроприводы с векторным управлением. Л.: Энергоатомиздат, 1987. 135c.

Слежановский О.В., Дацковский Л.Х. и др. Системы подчинённого регулирования электроприводов переменного тока с вентильными преобразователями. М.: Энергоатомиздат,1983. 255c.

Клюев О.В., Садовой А.В. Энергетические характеристики асинхронного электропривода с двухканальной системой управления. Збірник наукових праць Дніпродзержинського державного технічного університету. Дніпродзержинськ: ДДТУ, 2011. Вип. 2(17). С.174-181.

Клюєв О.В., Садовой О.В., Сохіна Ю.В. Системи керування асинхронними вентильними каскадами. Кам’янське: ДДТУ, 2018. 294с.




DOI: https://doi.org/10.31319/2519-2884.36.2020.10

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 O. V. Klyuyev, A. V. Sadovoi

ISSN (print) 2519-2884

ISSN (online) 2617-8389