O. P. Maksimenko, A. V. Nikulin, D. I. Loboiko


The effectiveness of a number of scientific studies is based on the fact that systems in development are considered as their subject. In particular, currently improving rolling processes to ensure resource saving and improving production safety requires a systematic approach to solving stability problems. Changes in the technological parameters of the process should be made so that the state of the system-technology, assessed as stable, does not change: the work is deformed in the stands of the rolling mill in the normative mode; variations in the values do not lead to an uncontrolled change in parameters. To justify the use of the resulting longitudinal forces  as a stability criterion, understood as preserving the consistency of the rolling technology, the stress state in the deformation zone was calculated. According to the results of calculations and measurements, diagrams of the distribution of contact stresses are obtained, then the longitudinal internal stress, the value of the current longitudinal internal force  are determined, the values of the resulting longitudinal forces  are found, the adequacy of the longitudinal stability estimates is confirmed. The presented results of rolling steel and lead samples, including those involving experimental data of other researchers, show that the use of the resulting longitudinal forces longitudinal stability as a criterion of the longitudinal stability more accurately characterizes the limiting conditions compared to essentially the geometric condition γ = 0 (α = 2f). Substantial explanations are possible for facts about the imbalance of forces in the deformation zone with subsequent slipping of the metal in the presence of an advance zone with a capture angle α <2f. The substantive explanations are given for the facts about the disturbance of the equilibrium of forces in the deformation cell with the subsequent sliding of the metal in the presence of an advance zone with a capture angle α <2f. The grounds are obtained to assert that the longitudinal stability of rolling characterizes the systemic properties of production technology in the dynamics of development, as structural stability and adaptability of the process.


structural stability; adaptability of rolling technology; average resulting longitudinal forces


Згуровский М.З., Панкратова Н.Д. Системный анализ. Проблемы. Методология. Приложения: монография. 2-е изд., перераб. и доп. К.: Наукова думка, 2011. 727с.

Грудев А.П. Теория прокатки. 2-е перераб. и доп. изд. М.: СП Интермет Инжиниринг, 2001. 280с.

Максименко О.П., Лобойко Д.И., Измайлова М.К. Продольная устойчивость полосы в валках с анализом контактных условий: монография. Днепродзержинск: ДГТУ, 2016. 213с.

Василев Я.Д., Минаев А.А. Теория продольной прокатки: учебник для магистров вузов. Донецк: УНИТЕХ, 2010. 456с.

Экспериментальное исследование максимальных углов захвата при установившемся процессе прокатки / А.П.Чекмарев, В.И.Прокофьев, В.П.Галицкий и др. Обработка металлов давлением: науч. труды ДМетИ. М.: Металлургия, 1967. Вып. LII. С.79-88.

Максименко О.П., Романюк Р.Я. Методика оценки продольной устойчивости процесса прокатки. Вестник Национального технического университета “Харьковский политехнический институт”. Харьков: НТУ “ХПИ”. 2009. № 33. С.84-90.

Спосіб прокатування плоских виробів: пат. 89747 Україна: В21В1/22. О.П.Максименко, В.М.Самохвал, М.Є.Нехаєв, Д.І.Лобойко. № 201314742; заявл. 16.12.13; опубл.25.04.14, Бюл. № 8.

Клименко П.Л. Контактные напряжения при прокатке с технологической смазкой. Сучасні проблеми металургії: наукові вісті. Т.8. Пластична деформація металів. Дніпропетровськ: «Системні технології». 2005. С.44-49.



  • There are currently no refbacks.

Copyright (c) 2019 O. P. Maksimenko, A. V. Nikulin, D. I. Loboiko

ISSN (print) 2519-2884

ISSN (online) 2617-8389