USING OF CLUSTERING METHODS IN INFOGRAPHIC PROBLEMS

O. O. Shumeiko, G. Ya. Shevchenko, D. V. Pankratova

Abstract


The article is devoted to using of various generalizations of the k-means method in infographic problems. It is shown that for effective visualization of each task it is necessary to use the quality criterion most suitable for displaying the specificity of the data used. For a number of problems, it is suggested to use the gravitational model instead of the Euclidean distance or Mahalonobis distance. It is proposed to use the shuffled frog-leaping algorithm to optimize the operation of the algorithm.


Keywords


clustering; infographics; visualization; data mining

References


Швед О.В. Инфографика как средство визуальной коммуникации / О.В.Швед // Science and Education, Philology (III). – 2013. – C.189-194. – Режим доступу: http://er.nau.edu.ua:8080/handle/NAU/15220.

Шумейко А.А. Интеллектуальный анализ данных (введение в Data Mining) / А.А.Шумейко, С.Л.Сотник. – Днепропетровск: Белая Е.А., 2012. – 212с. – Режим доступу: http://pzs.dstu.dp.ua/Data/dm.pdf.

Eusuff M. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization / M.Eusuff, K.Lansey, F.Pasha // Engineering Optimization. – 2006. – №2, vol. 32. – P.129-154.

Narimani M.R. A new modified shuffle frog leaping algorithm for non-smooth economic dispatch / M.R.Narimani // World Applied Sciences Journal. – 2011. – №6, vol. 12. – P.803-814.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 O. O. Shumeiko, G. Ya. Shevchenko, D. V. Pankratova

ISSN (print) 2519-2884

ISSN (online) 2617-8389